El próximo viaje tripulado alrededor de la Luna promete marcar un nuevo hito en la exploración espacial, pero también reabre un debate técnico profundo sobre riesgos, decisiones de ingeniería y la forma en que la NASA gestiona la incertidumbre. Detrás del entusiasmo por Artemis II, persiste una pregunta clave: ¿es suficiente lo que hoy se sabe para garantizar un regreso seguro?
El 6 de febrero, siempre que no surjan nuevos contratiempos, cuatro astronautas emprenderán una misión histórica que los acercará a orbitar la Luna por primera vez en más de cincuenta años. Viajarán en Orión, la cápsula creada por la NASA a lo largo de dos décadas y concebida como pieza central del programa Artemis. Aun así, el vuelo no está exento de controversias. La nave despegará con un elemento esencial —su escudo térmico— que ya presentó un comportamiento inesperado en una misión anterior y que continúa despertando inquietudes entre especialistas pese a los prolongados estudios realizados.
La NASA sostiene que el riesgo está identificado, estudiado y mitigado. Algunos ingenieros y exastronautas, en cambio, consideran que aún existen incógnitas relevantes. El debate no gira en torno a si la misión fallará, sino a cómo se interpreta el riesgo aceptable cuando hay vidas humanas en juego y datos limitados sobre el comportamiento real de un sistema en condiciones extremas.
La función esencial que desempeña el escudo térmico durante una misión lunar
El escudo térmico de Orión constituye uno de los elementos clave de la nave, ya que se encarga de salvaguardar la cápsula y a quienes viajan en ella durante la etapa más crítica del trayecto: la reentrada en la atmósfera terrestre. Al emprender el retorno desde la Luna, Orión puede desplazarse a más de 30 veces la velocidad del sonido, provocando temperaturas externas capaces de superar los 2.700 grados Celsius.
Para soportar ese entorno, el escudo está recubierto con Avcoat, un material ablativo diseñado para carbonizarse y erosionarse de manera controlada. En teoría, este proceso disipa el calor de forma gradual, evitando que llegue al interior de la cápsula. El concepto no es nuevo: versiones de Avcoat ya se utilizaron con éxito en las misiones Apolo.
El problema surgió tras el vuelo de prueba Artemis I, realizado en 2022 sin tripulación. Al inspeccionar la cápsula tras su regreso, los ingenieros detectaron que grandes fragmentos del escudo térmico se habían desprendido, dejando cavidades profundas en la superficie. Aunque la nave regresó intacta y los análisis indicaron que, de haber habido astronautas a bordo, habrían sobrevivido, el comportamiento del material no coincidía con lo esperado.
Este descubrimiento llevó a la NASA a iniciar una investigación exhaustiva con el fin de entender con precisión qué sucedió durante la reentrada y determinar si ese fenómeno podría reproducirse o incluso intensificarse en una misión tripulada.
Decisiones de diseño que se gestan desde la concepción del programa
Para entender el debate actual, es necesario retroceder varios años en la historia de Orión. Cuando la NASA decidió, en 2009, utilizar Avcoat como material del escudo térmico, lo hizo basándose en décadas de experiencia previa. Sin embargo, la forma de aplicar ese material sí cambió respecto a la era Apolo.
En los diseños iniciales, el escudo térmico se elaboraba mediante una intrincada estructura en forma de panal rellena de Avcoat, un enfoque que garantizaba un rendimiento muy estable, aunque implicaba procesos lentos, costosos y poco viables para una producción masiva. Para agilizar la fabricación, los responsables del programa decidieron adoptar una alternativa que empleaba grandes bloques del mismo material.
Desde el punto de vista industrial, la decisión tenía sentido: los bloques eran más fáciles de fabricar, probar e instalar. Sin embargo, Artemis I fue la primera ocasión en que este nuevo enfoque se probó en condiciones reales de reentrada lunar. Y fue precisamente ahí donde aparecieron las anomalías.
Los análisis posteriores concluyeron que el Avcoat utilizado no era lo suficientemente permeable. Durante la reentrada, los gases generados por el calentamiento quedaron atrapados dentro del material, provocando presión interna y, finalmente, el desprendimiento de fragmentos. El resultado fue un escudo térmico que, aunque cumplió su función básica, lo hizo de una manera que no estaba en los modelos originales.
Para entonces, el escudo térmico de Artemis II ya estaba fabricado e integrado en la cápsula. Reemplazarlo no era una opción realista ni en términos técnicos ni de calendario.
Una estrategia basada en modificar la reentrada
Ante la imposibilidad de sustituir el escudo térmico, la NASA decidió adoptar otra estrategia: modificar el perfil de reentrada de la nave. Orión fue concebida para ejecutar una “reentrada con salto”, una maniobra en la que la cápsula penetra por un instante en la atmósfera, asciende nuevamente y después desciende de manera definitiva. Este enfoque permite afinar con exactitud el lugar de amerizaje, aunque también expone al escudo térmico a complejos ciclos de calentamiento.
Para Artemis II, los ingenieros han modificado esta trayectoria. El nuevo plan reduce la altura y la intensidad del “rebote” inicial, con el objetivo de evitar las condiciones que provocaron el agrietamiento del escudo en Artemis I. Según la NASA, este ajuste permitirá que el Avcoat se erosione de manera más predecible y controlada.
Los encargados del programa afirman que la determinación se sustenta en un examen minucioso de datos, simulaciones por computadora y ensayos efectuados en laboratorio, y desde su óptica el riesgo residual se clasifica como moderado y aceptable dentro de los estándares establecidos por la agencia.
No todos comparten esa confianza.
Críticas diversas y un diálogo que trasciende esta misión
Algunos exastronautas y expertos en protección térmica consideran que cambiar la trayectoria de reentrada no elimina el problema de fondo. Para ellos, el comportamiento del Avcoat sigue siendo difícil de predecir con precisión, especialmente cuando se trata de cómo se forman y crecen las grietas una vez que el material empieza a fallar.
Uno de los puntos más debatidos es el uso de modelos computacionales para estimar el riesgo. Estas herramientas permiten simular la generación de gases, la carbonización del material y el inicio de grietas, pero no siempre pueden anticipar cómo evolucionarán esas grietas en condiciones reales. Según los críticos, esta limitación introduce un nivel de incertidumbre que no debería ignorarse en una misión tripulada.
Incluso entre los especialistas que respaldan el lanzamiento hay un acuerdo común: el escudo térmico de Artemis II probablemente exhibirá daños perceptibles al volver a la Tierra. La diferencia surge al interpretar ese resultado. Para la NASA y ciertos asesores, la estructura de Orión cuenta con márgenes amplios que permiten asumir ese desgaste sin poner en riesgo a la tripulación. Para otros, aceptar tal escenario significa operar demasiado cerca de un punto límite crítico.
Debajo del Avcoat, Orión cuenta con una estructura compuesta que ha demostrado resistir brevemente temperaturas extremas en pruebas controladas. Esta capa no fue diseñada como un respaldo formal, pero representa una línea adicional de protección. La NASA insiste en que no espera depender de ella, aunque reconoce que añade robustez al sistema.
Lecciones históricas y la cultura del riesgo en la NASA
El debate en torno a Artemis II no surge de manera aislada. Para numerosos veteranos de la agencia, resulta inevitable vincularlo con la historia del programa del transbordador espacial y con las tragedias del Challenger y el Columbia. En ambos sucesos, las investigaciones posteriores destacaron fallos técnicos, pero igualmente expusieron dificultades culturales relacionadas con cómo se valoraba el riesgo y con la presión por alcanzar las metas establecidas.
Algunos críticos ven paralelismos preocupantes: una confianza excesiva en modelos teóricos, la normalización de anomalías y una tendencia a interpretar resultados favorables como validaciones completas de procesos que aún tienen debilidades. Desde esta óptica, incluso un Artemis II exitoso podría reforzar una falsa sensación de seguridad.
Otros dentro y fuera de la NASA rechazan esa comparación. Argumentan que la agencia ha aprendido de sus errores, que hoy existen múltiples capas de revisión independiente y que el debate actual es, en sí mismo, una señal de una cultura más abierta al cuestionamiento técnico.
La realidad probablemente se sitúe en un punto intermedio. La NASA reconoce que su historial no es perfecto, pero también sostiene que ningún avance significativo en exploración espacial ha estado exento de riesgos.
En el punto medio entre la seguridad técnica y la inevitable incertidumbre
A pocas semanas de su lanzamiento, todo indica que la decisión está tomada: Artemis II despegará con tripulación a bordo. Los responsables del programa han insistido en que la seguridad sigue siendo la prioridad absoluta y que, con los datos actuales, el nivel de riesgo se mantiene dentro de parámetros aceptables. Los astronautas designados para esta misión también han manifestado públicamente su confianza tanto en el vehículo como en el trabajo realizado por los ingenieros.
Sin embargo, incluso los partidarios de la misión reconocen que ciertos detalles del desempeño del escudo térmico solo podrán verificarse cuando la cápsula vuelva a ingresar en la atmósfera terrestre, pues hay factores que no pueden recrearse totalmente en tierra ni simularse con precisión absoluta.
Ese es, en última instancia, el núcleo del debate: hasta qué punto es razonable aceptar lo que no se puede saber con certeza. Para algunos, la exploración siempre implicará avanzar con información incompleta. Para otros, el margen actual aún deja demasiadas preguntas abiertas.
Lo que está claro es que Artemis II no solo será una misión técnica, sino también una prueba de cómo la NASA equilibra innovación, presión institucional y prudencia. El resultado —sea cual sea— influirá en la confianza pública, en las decisiones futuras del programa Artemis y en la forma en que la agencia enfrenta los riesgos inherentes a llevar nuevamente seres humanos más allá de la órbita terrestre baja.
Como han indicado incluso sus simpatizantes, poner en duda estas decisiones no constituye una postura contraria, sino que representa un paso fundamental dentro del propio proceso. La historia de la exploración espacial evidencia que el avance no proviene de una seguridad infalible, sino de la disposición a asimilar lecciones, rectificar y seguir adelante, recordando que en el espacio la física no hace concesiones y la fortuna no siempre está del mismo lado.

